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Example: Paired observations

� Two methods A and B to measure blood cell count (to check for the use of doping).

� Paired study.

Person ID Method A Method B
1 5.5 5.4
2 4.4 4.9
3 4.6 4.5
4 5.4 4.9
5 7.6 7.2
6 5.9 5.5
7 6.1 6.1
8 7.8 7.5
9 6.7 6.3
10 4.7 4.2

� It must be expected that two measurements from the same person are correlated, so a paired t-test is the correct

analysis

� The t-test gives a p-value of 5.1%, which is a borderline result...

� But more data is available



� In addition to the planned study 10 persons were measured with only one method

� Want to use all data, which is possible

with random effects

� Assume these 20 are randomly selected

from a population where the blood cell count

is normally distributed

� Consider the following model:

Ci = α(Mi) +B(Pi) + εi, i = 1 . . . 30

α(Mi) the two fixed method effects

B(Pi) ∼ N (0, σ2
P ) the 20 random effects

εi ∼ N (0, σ2
R) measurement noise

All B(Pi) and εi are assumed independent

� This model uses all data and gives a 95%

CI for the method bias α(A)− α(B) which

is: (0.05; 0.41).

� Notice that now there is a (slightly) significant

method bias.

Person ID Method A Method B
1 5.5 5.4
2 4.4 4.9
3 4.6 4.5
4 5.4 4.9
5 7.6 7.2
6 5.9 5.5
7 6.1 6.1
8 7.8 7.5
9 6.7 6.3
10 4.7 4.2
11 5.1
12 4.4
13 4.5
14 5.3
15 7.5
16 5.7
17 6.0
18 7.5
19 6.5
20 4.2



Random effects



Random effect model

� In purely fixed effects models we have

– Random variables we observe

– Model parameters we want to estimate

� In random effects models we have

– Random variables we observe

– Random variables we doNOT observe

– Model parameters we want to estimate

� This model class is very useful and goes by many names: random effects models, mixed models, latent variable

models, state-space models, frailty models, hierarchical models, ...

So the difference is that we have some quantity with a distribution, which is unobserved.



Reminder: Estimation with purely fixed effects

� We have:

Observations: y = (y1, y2, . . . , yn)

Parameters (µ, σ) in model: yi ∼ N(µ, σ2)

� Choose parameters which make our model best match the data (optimize likelihood).



Estimation with random effects

� We have:

Observations: y

Unobserved random effects: u

Parameters (θ) in model: (y, u) ∼ D(θ)
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� How do we estimate our parameters when some of our observations are not observed?



Estimation with random effects — 2

� The banana is only an intermediate calculation

1: Joint model (banana) is determined

from model parameters θ

2: Marginal model is calculated from

joint by integration

3: Marginal is matched to data as always

� Imagine the distribution D(θ) is described by

a likelihood function L(y, u, θ), then:

LM (y, θ) =
∫
L(y, u, θ) du

is the marginal likelihood.
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Examples where this is the underlying technique

� Random effects are often used:

Time series models via state-space models Correlation via hidden processes

Split-plot models Correlated observations within plot

Repeated measurements Correlated observations within subject

Overdispersion in Poisson via Negative binomial Patchiness accounted for

Spatial models Correlation introduced via hidden field

Penalized splines Smoothing penalties equivalent to MVN latent variables

...

� Often our only option!

� When something unobserved gives us extra variation or correlated observations.



The Laplace approximation



Reminder: Multivariate normal distribution

� The density for a k-dimensional multivariate normal distribution with mean vector µ and covariance matrix Σ is:

L(z) =
1√

(2π)k|Σ|
exp

[
−1

2
(z − µ)⊤Σ−1(z − µ)

]
� We write Z ∼ Nk(µ,Σ).

� So, since it needs to integrate to one:∫
exp

[
−1

2
(z − µ)⊤Σ−1(z − µ)

]
dz =

√
(2π)k|Σ|



The Laplace approximation

� We need to calculate the difficult integral

LM (θ, y) =

∫
Rk

L(θ, u, y)du

� So we set up an approximation of ℓ(θ, u, y) = − logL(θ, u, y)

ℓ(θ, u, y) ≈ ℓ(θ, ûθ, y) +
1

2
(u− ûθ)

⊤ (ℓ′′uu(θ, u, y)|u=ûθ

)
(u− ûθ)

� Which (for given θ) is the second order Taylor approximation around:

ûθ = argmax
u

L(θ, u, y)



� With this approximation we can calculate:

LM (θ, y) =

∫
Rk

L(θ, u, y)du

≈
∫
Rk

e−ℓ(θ,ûθ,y)− 1
2
(u−ûθ)

⊤(ℓ′′uu(θ,u,y)|u=ûθ)(u−ûθ) du

= L(θ, ûθ, y)

∫
Rk

e−
1
2
(u−ûθ)

⊤(ℓ′′uu(θ,u,y)|u=ûθ)(u−ûθ) du

= L(θ, ûθ, y)

√
(2π)k

| (ℓ′′uu(θ, u, y)|u=ûθ
) |

� In the last step we remember the normalizing constant for a multivariate normal, and that |A−1| = 1/|A|.



Laplace approximation work flow

0. Initialize θ to some arbitrary value θ0

1. With current value for θ optimize joint likelihood w.r.t. u to get ûθ and corresponding Hessian H(ûθ).

2. Use ûθ and H(ûθ) to approximate ℓM (θ)

3. Compute value and gradient of ℓM (θ)

4. If the gradient is greater than ϵ set θ to a different value and go to 1.

Notice the huge number of — possibly high dimensional — optimizations that are required.



The Laplace approximation

� The Laplace likelihood only approximates the marginal likelihood for mixed models with nonlinear random effects

(including GLMMs with a link function) and thus maximizing the Laplace likelihood will result in some amount of

error in the resulting estimates.

� It can be shown that joint log-likelihood converges to a quadratic function of the random effect for increasing

number of observations per random effect → the Laplace approximation is asymptotically exact.

� In practical applications the accuracy of the Laplace approximation may still be of concern, but often improved

numerical approximation of the marginal likelihood (such as Gaussian quadrature) is computationally infeasible.

� We can evaluate if it is causing bias (subject for later)



Simple state-space model



State-space model (random walk+observation error)

� Observation vector Y generated from:

– λi = λi−1 + ηi

– Yi = λi + εi

– where i = 1 . . . 50, ηi ∼ N(0, σ2
λ), and εi ∼ N(0, σ2

Y ) all independent.

Y

� Notice λ vector unobserved.

� Here we wish to estimate both λ and the model parameters

(λ◦, σλ, and σε)



Can construct the joint likelihood

� The joint likelihood contributions from the random effects:

(λ1 − λ◦) ∼ N(0, σ2
λ)

(λ2 − λ1) ∼ N(0, σ2
λ)

...

(λ50 − λ49) ∼ N(0, σ2
λ)

� The joint likelihood contributions from the observations:

y1 ∼ N(λ1, σ
2)

y2 ∼ N(λ2, σ
2)

...

y50 ∼ N(λ50, σ
2)

� So the joint negative log likelihood becomes:

−
50∑
i=1

log(φ◦,σλ
(λi − λi−1))−

50∑
i=1

log(φλi,σ(yi))



We can solve this by Laplace approximation in RTMB

� Code up the joint negative log likelihood

– Declare the unobserved quantities as ‘random’ (but part of parameter set)

– Code as if the unobserved were observed

� Identify which quantities are to be considered as random effects (unobserved), as e.g:

obj <- MakeADFun(nll,par,random="lam")



Random walk + noise in RTMB

1 library(RTMB)

2 dat <- list(y=scan("Y.dat"))

3 par <- list(logSdRw=0, logSdObs=0, lam0=0, lam=numeric(length(dat$y)))

4

5 jnll <- function(par){

6 getAll(par , dat)

7 sdRw <- exp(logSdRw)

8 sdObs <- exp(logSdObs)

9 ret <- -dnorm(lam[1], mean=lam0 , sd=sdRw , log=TRUE)

10 ret <- ret - sum(dnorm(diff(lam), sd=sdRw , log=TRUE))

11 ret <- ret - sum(dnorm(y, mean=lam , sd=sdObs , log=TRUE))

12 ret

13 }

14

15 obj <- MakeADFun(jnll , par , random="lam", silent=TRUE)

16 opt <- nlminb(obj$par , obj$fn, obj$gr)

17

18 sdr <- sdreport(obj)

19 pl <- as.list(sdr , "Est")

20 plsd <- as.list(sdr , "Std")

21

22 plot(dat$y, xlab="Time", ylab="Y", las=1)

23 lines(pl$lam , lwd=3, col="red")

24 lines(pl$lam -2*plsd$lam , lty="dotted", lwd=3, col="red")

25 lines(pl$lam+2*plsd$lam , lty="dotted", lwd=3, col="red")
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Exercise 1: RW + noise with missing observations

a) Consider again the simple random walk plus noise example. In the file: rwmissing.dat six of the observations are

missing (coded as ‘NA’). Consider and implement changes in the program to deal with that.

b) Make a plot of the estimated process and its confidence interval (similar to the one on the previous slide) to illustrate

the effect of the missing observations.

Hint: The following code can be used to identify which observations are not missing:

idx <- which(!is.na(y))



That’s basically it(!)

� Seems like too simple an example?

� This approach can be useful very generally, e.g:

– Higher dimension

– Some non-linearity

– Some non-normality in the process and observations



Exercise 2: A theta logistic population model

A theta logistic population model is defined for the log-transformed population size as a nonlinear function of its

previous size in the following way:

Xt = Xt−1 + r0

(
1−

(
exp(Xt−1)

K

)θ
)

+ et,

Yt = Xt + ut,

where et ∼ N(0, Q) and ut ∼ N(0, R).

Data for this model is available in the file: theta.dat

a) Fit the model to data and estimate the five model parameters.

Hint: It is helpful to log transform the parameters and initialize log(K) to around 6.
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